ENTERPRISE ARCHITECTURE FOR THE DIGITAL FUTURE

PROF. DR. DANIEL FÜRSTENAU
FU BERLIN | EINSTEIN CENTER DIGITAL FUTURE
POTSDAM | JANUARY 27, 2020
• Internship and work at Enterprise Architecture (EA) vendor (BOC) 2007-2011
• Worked with EA data in my dissertation and published several papers on EA
• Program committee member for Trends in EA workshop 2015-2019
• Ties to multiple EA vendors/consultants including Scape, BOC, iteratec,...
• Cooperate with multiple companies regarding EA issues

• Main duties
 • Assistant Professor Digital Transformation and IT Infrastructures
 • Member of AIS, GI, Academy of Management OCIS
 • Main research area: IT management, besides that also interest in digital health
AGENDA

• Get a primer on EA from my personal perspective
• Learn about tool support for EA
• Theoretical underpinnings
• Hear about current IT trends and how they affect EA
• Is EA obsolete? What is the role of EA in the future?
ENTERPRISE ARCHITECTURE: MAIN ISSUES

- Complexity management / interdependencies
- Vendor and technology path dependencies
- Business versus IT viewpoints (and their alignment)
- Dynamic evolution (emergence versus planning)
Enterprise architecture (EA) is the name given to a set of conceptual frameworks, processes, and tools used to manage an enterprise’s information system architecture

-- MacCormack et al. 2015
MAIN PILLARS OF (TRADITIONAL) EA APPROACH

• **Level thinking**: business -- application -- information -- technology architecture
• **As-is / to-be planning**, architectural blueprints > strategic and tactical planning
• **Different viewpoints** (of the business/application/information/technology architect,...) frame concerns of stakeholders
• **Dependency analysis** to get an overview over different levels and their dependencies
• **TOGAF** as an overarching methodological framework (Architecture development cycle, metamodel,...)
• **EA as a institution / management function** > role of the enterprise architect and the architecture function in a company, **use of EA tools** to support the work of the enterprise architect
A SIMPLE METAMODEL FOR ENTERPRISE ARCHITECTURE

Source: Eckert, Fürstenau, Kirchner 2011 HMD Praxis der Wirtschaftsinformatik
TOGAF ARCHITECTURE DEVELOPMENT CYCLE

Source: TOGAF / The Open Group
STATE-OF-THE-ART EA TOOLS
THE CHOICE OF AN EA TOOL

• Homegrown IT repositories
 • advantage homegrown: fit to enterprise, customized
 • disadvantages: limited features, informed only little by standard frameworks, error-prone

• Dedicated EA tools
 • advantages: native support for EA framework, feature-rich
 • disadvantages: complex, inflexible, native cloud tools only emerging, not data science tools
GARTNER MAGIC QUADRANT ENTERPRISE ARCHITECTURE
MAIN PHILOSOPHIES OF EA TOOLS

• Database/repository approach
 • Structured database at the core
 • Visualization as an add-on to the database
 • Strong querying capabilities
 • Example: planning IT

• Modeling approach
 • Graphical modeling at the core
 • Repository emerges as a result of modeling
 • Visually appealing
 • Example: BOC ADOit
RELATION OF METAMODEL - REPOSITORY - VIEW/MODEL

Metamodel

(Object)Repository

View
DEEP DIVE BOC ADOIT: DEPENDENCY ANALYSIS

Source: Fill et al. 2016 Developing Cloud-based Enterprise Architectures Using Archetypes
DEEP DIVE BOC ADOIT: CAPABILITY MAP

Source: Kirchner 2011 Metamodell- und sichtenbasierte Ansätze zum werkzeuggestützten Management der Unternehmensarchitektur
Source: BOC - How to Demonstrate the Value of Business Architecture through Quick Wins
Source: CIO.de - 18 EAM Tools im Vergleich. https://www.cio.de/g/18-enterprise-architecture-tools-im-vergleich,105575,7
Source: Kirchner 2011 Metamodell- und sichtenbasierte Ansätze zum werkzeuggestützten Management der Unternehmensarchitektur
Source: CIO.de - 18 EAM Tools im Vergleich. [https://www.cio.de/g/18-enterprise-architecture-tools-im-vergleich,105575,7]
SUMMARY AND PITFALLS OF TRADITIONAL EA APPROACH

• Planning-centric view
• Tool-centric view: multiple consultancies now claim “lean approaches“ to avoid overreliance in tool support
• Degree of automation still limited
 • Effort for analysis and data collection > what is the method?
 • Limited comparability across enterprises on key measures
 • Where’s the (artificial) intelligence, optimization, learning?
THEORETICAL UNDERPINNINGS
• Network analysis and control theory (of complex systems) as the main theoretical underpinnings of EA

LOOK AT DEPENDENCIES, CENTRALITIES AND CLUSTERS

- A **network representation** displays the elements of an IT architecture and its dependencies.
- It allows the **identification of critical systems** through degree, betweenness, and Eigenvector analysis.
- It also allows identifying the **clustering/modularity structure** as an indicator of **separation tendencies**.

Source: Fürstenau and Rothe 2014, Fürstenau et al. 2019
MACCORMACK ET AL.’S WORK: LOOK AT INDIRECT AND CIRCULAR DEPENDENCIES OVER MULTIPLE LEVELS

- **Design structure matrices** are simple representations of an EA as a square matrix
- Used in system engineering and construction as a methodological tool to perform system analysis
- MacCormack et al. show that **number of indirect dependencies** of an element in the DSM is related to **costs of IT change**

Source: MacCormack et al. 2015 Building the Agile Enterprise: IT Architecture, Modularity and the Cost of IT Change
FUTURE WORK: TEMPORAL EVOLUTION OF EAS

• Use of network evolution algorithms such as (dynamic) **ERGM** (Exponential Random Graph Models) or SAOM to explain the evolution of EAs

• Use of simulation to understand structural pattern evolution, dependency on external perturbations, and influence of internal decision-making: **control points**

Source: Dreyfus et al. 2008, Fürstenau and Kliewer 2015, Haki et al. 2020
5 IT TRENDS AND HOW THEY AFFECT EA
1. AGILE ENTERPRISE

• **Agility** is defined as the ability to detect and seize market opportunities with speed and surprise (Sambamurthy et al. 2003)

• **Rapid scaling** of digital ventures enabled by unprecedented modularity and recombination possibilities of digital technologies (Huang et al. 2017)

• Introduction of new organizational **development methods** to support agility: agile (Scrum), Kanban, continuous integration, DevOps,... (Kraus and Wolter 2016, Wiedemann et al. 2019)

• Implications for Enterprise Architecture:
 • Challenge of **stakeholder involvement, getting relevant data, information provision** (Hauder et al. 2014)
 • Less focus on (long-term) planning, but more piecemeal, **iterative approach**
 • Less focus on “policing,” stronger focus on enabling **digital innovation**

Source: Fürstenau et al. 2019
Growth, Complexity, and Generativity of Digital Platforms
2. IT AND OT - OPERATIONAL TECHNOLOGIES

- **Internet of things (IoT)** is an enormous network of connected devices: sensors, controllers, actuators

- Based thereupon, **operational technologies (OT)** are defined as all the elements that support the daily operations of a company (Lara et al. 2019)

- Through IoT-based OT currently huge shifts are ongoing in many domains such as energy, production, smart buildings, facility management, etc.

- This leads to new architectural dependencies and associated **security vulnerabilities**

- Implications for Enterprise Architecture:
 - Need to integrate IT and OT
 - Need for domain-specific modeling methodologies

Source: Lara et al. 2019 OT Modeling: The Enterprise Behind IT

Source: www.intel.com (Smarter Buildings Case Study)
3. ENTERPRISE ARCHITECTURE AND IT SECURITY

- Dealing with **security vulnerabilities** is becoming an increasing challenge for companies (Fenz et al. 2014, Ani and Tiwari 2017)
- Increasing awareness of people on **data security** and **privacy** issues, GDPR and other legislations.
- Security analyses increasingly demand that the **effects of attacks** from the infrastructure on the information and processes be made transparent
- Availability of open vulnerability databases such as Common Vulnerability Scoring System (**CVSS**)

Implications for Enterprise Architecture:
- Integrate separate streams of research (IT security and IT architecture)
- Need to develop methodologies that help in real-time risk assessment employing (extended) DSMs
- Develop heat maps and dashboards for decision-support

4. DATA-DRIVEN ENTERPRISE ARCHITECTURE AND ECOSYSTEM ANALYSIS

- Trend for companies to compete in larger networks, restructuring of value chains to open platform models and ecosystems
- Availability of open data on these ecosystems and tech stacks, e.g. Crunchbase, StackShare, Built With

- Implications for Enterprise Architecture:
 - Focus on boundaries of a single enterprise will be increasingly insufficient
 - Need to develop new tools for data-driven analysis of business and technology ecosystems

5. EA AND ARTIFICIAL INTELLIGENCE

- **Machine learning (ML)** enables to detect patterns in data through supervised, unsupervised and reinforcement learning methods.

- Complements traditional **search, optimization, and reasoning** methods from computer science and OR

- Commodityization of machine learning (ML) toolsets in combination with availability of more data drive down the **costs of prediction** in nearly every business area

- Implications for Enterprise Architecture:
 - Enhance/augment EA’s analytical capabilities through ML (e.g. Lufthansa: for redundancy detection)
 - Use more and more varied data sources to support EA decision-making
 - Reconfiguration of the EA process and changing role of the enterprise architect, need competencies needed

Source: Breithaupt and Kern 2019 ML Conference, Berente et al. 2019 MISQ Special Issue Call
TRADITIONAL EA APPROACH NEEDS TO TRANSFORM

• More automation
• More business- & information-centric
• More analytical
• More interdisciplinary
• More collaborative
• I personally don’t believe that leaner is necessarily better (Ashby’s law of requisite variety (1957): a complex environment can’t be dealt with by a simple approach)
• Overview of EA approach from my personal perspective
• Main approaches and capabilities of EA tools
• Network and control-theoretical underpinnings of EA
• Recent IT trends and how they affect EA
• Is EA obsolete?
 • EA needs to transform to stay relevant
 • Need to further develop the theoretical underpinnings of EA
 • EA needs more automation, more business-/information-centeredness, more analytical methods, interdisciplinary, collaborative, but not simpler
 • Maybe its called different then... Some proposals include....
 architectural thinking (Winter 2014), designed for digital (Ross et al. 2019) or simply

ENTERPRISE ARCHITECTURE FOR THE DIGITAL FUTURE (this talk)
ENTERPRISE ARCHITECTURE FOR THE DIGITAL FUTURE

PROF. DR. DANIEL FÜRSTENAU
FU BERLIN | EINSTEIN CENTER DIGITAL FUTURE
POTSDAM | JANUARY 27, 2020